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In this article conditions are obtained in a finite form on the boundary of rigid zones in a viscoplastic
medium, A similar conditon was given in [1] but in an integral form. Moreover, a stationary flow is con-
sidered of a Bingham—Shvedov medium in a two-dimensional conduit [2]. Small orthogonal harmonic per-
turbations are imposed on the lower motionless conduit surface, the upper unperturbed plane moving with
constant velocity and making an arbitrary angle with the perturbations. It is assumed that there is adhesion
of the medium at the boundaries. The problem is solved by using the small-parameter approach. A criti-
cal conditionis found by using two approximations so that rigid zones are first formed in some sections.
Singularities appear in the solution if the flow is parallel to perturbations. These cases are analyzed sep~
arately. An attempt to find a criterion for starting the formation of a rigid zone in a viscoplastic medium
was previously made in {3].

1. Condition on the Boundary of Rigid Zones

THEOREM. For the surface v =0 to be the boundary of a rigid zone for a flow of viscoplastic material
(v is the velocity of the particle of the medium) it is necessary and sufficient that on this surface the condi-
tion
d|v|/on =0 (1.1)
be satisfied, where n is the normal coordinate from the boundary % of the rigid zone:
The necessary condition of the theorem can be proved by using the relations
Vg =0, &jlz =" 9,7+ vp,)n = 0 ®.2)

Sufficiency. Let the following assumptions of the theorem be satisfied on Z: v|5 =0, 8 |v| /onj =0.
It is required to prove that sijlz =0. The functions v and 8 v/9n are expanded into series in the neighbor-
hood of the surface 2,

v=20v/dnlgn4-..., Ov/dn=20v/on|z+... ¢.3)
v-Ov/on = @v/on|g)Pn+ ... (1.4

For the velocity modulus these expressions can be written as
[vI=0|v|/onfznt..., d|v|/on=20]|v|/on]z +... L.5)
Ivio[v]/on=(d|v]|/on|e)?n +... (1.6)

Since the left-hand sides of the expressions (1.4) and (1.6) are equal, so must also be the right-hand sides,
that is,

@|v]/onlg)Prt...=@v/on[slPn+... 1.7

Hence, it follows that 8v/dn|s = 0 simultaneously with v =0, which indicates that &jjlz = 0, whichis
what was required to be proved.

Voronezh. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 143~
148, May-June, 1974. Original article submitted December 28, 1973,

© 1975 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming,
recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for $15.00.

400



Steady Flow of Viscoplastic Medium

2.

in a Two-Dimensional Conduit
The bottom plane of the channel (y=0) is not in motion and a small orthogonal perturbation
(2.1)

y = h (8, cos myz -+ 8, cos m,z)
is applied to it, whereh is the channel width, 6;, d,<<1. The top plane (y=h) moves with constant velocity

v, parallel to the xz plane and making an angle « with the z axis.
The relation between the components gj of the stress tensor and &;; of the strain-ratestensor in the
(2.2)

case of the Mises plasticity conditions is given by [4]
Oy == (VQ ki Vsqlaql -+ 2n) g;; - POy, Sgq = 3P

where k isthe flow limit, and 7 is the viscosity coefficient.
The components of the tensor of the strain rates are related to the flow velocity by means of
2.3)

g5 = Yo (vy,; + v5,)

Only dimensionless quantities will be used from now on:

z=2zh y=yh z=2h my = muh™, v; =00, 0;; =0k, &;; = &;; v,

The equilibrium equation and the incompressibility condition for the medium are given by
g =0, divv=20 2.4)
The boundary conditions for our problem are
v, =y, = v, = 0 for Hy = 6, cos myz + 8, cos myz
v =sina, v, =0, v, = cos & for y =1 (2.5
(2.6)

The velocity of the medium particles and the mean pressure are sought in the form
Fz, ¥4y 25 8y, 8y) = f® + 8 (2, 9) + 8" (4, 2) + . ..

Using the boundary conditions (2.5) the zeroth approximation is the solution of the Couette problem in
(2.7

a two-dimensional conduit:
2 = ysina, 0 =0, v, =ycosa, PO =0

Substituting the expansion (2.6) successively into (2.3), (2.2), and (2.4) and using (2.7) one obtains the

following system of equations:
L (20;,“ -+ v;, w+ v;, xy) — sin®a (v;,yy + v;,, xy) — Sinacos av;, w+ P: «=10

L vy, xx + 20y, yy + U, ) — SIN% @ (g, 0x + Vs, xy) — SIN @ €08 Wy, 5y + P: =0
L (U, 5 + s, yy) — COS2 Az, 4y — SID G COS @ (U, yy + Uy, z) = O (2.8)
Va,x + Vy,y = 0
L (vx, yy + Vs, 22) — sin®avy, 4y — sin acosa (v;, vz + v:, w) =0
(2.9)

" v ,. . v . P ”

L (2vy, yy + vy, 22 + Uz, y2) — c0S2 & (vy, ;; + Vg, yz) — SIN 0.COS Qg y; -+ P,y = 0
v N " . v . .

L (2, uy + 20z, 22 -+ Uy y2) — €05%,0 (vz, yy + Uy, yo) — sinacos Wy yy+ P, . =0

U;,U+U;,z=0
L=1+4a"? o =Fkh/no,

The boundary conditions for the systems (2.8) and (2.9) are obtained by expanding the conditions (2.5)
(2.10)

into a series of powers of &;, 8y
v, = -~sin a cosm,z, v, = 0, v,’ = —cos & cos m;z fory = 0
(2.11)

V) =v  =9p,,=0 fory=1
= —sin acos myz, v =0, v,” = —cos a cos myz for y = 0

v
v =9/ =9"=0fory==0
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To solve the system of equations (2.8) with the boundary conditions (1.10) the unknown functions are
sought in the form

ve' = A,(y) cos myx, v/ = By(y) sin m,z
v," = Cy(y) cos myz, P’ = D, (y) sin myz (2.12)
We now insert (2.12) into (2.8) and (2.10). After some transformations one obtains

A; = m™ pBy, Im™ (L — sin®a) p? — my(L + sin®a)p]l B, —
—sina cos & p*C; + myD; =0,[(L + sin® &) p?2 — m2 (L — (2.13)

— sin® @)l By + m; sin @ cos @ pCy + pD, = 0, sina cos & (myp® + myp) By + [m2L — (L — cos?a) pl C; = 0
whexe the symbolic notation p=d/dy has been introduced.
The boundary conditions are
4, =B, =C,=0fory=1
2.14
4, = —sina, B, =0,C, = —cosa for y = 0 ¢ )
The characteristic equation of the system (2.13) is
t—D{F—-R+a(t+3si?a)li+14+a(1 —sin?a)} =0, = Am, 2 (2.15)
Its roots are equal to
h=1, t,3=""{2+ a® (1 + 3sin® @) -+ a [16sin®* a + a® (1 -+ 3sin? a)?]*) (2.16)

Bearing in mind that there are no muitiple roots and that A ;=—A ;, Ay==A; Ag=—A. the solution of
the system (2.13) is sought in the form

3

B (y) = D\ lerexp (My) -+ cuig €xp (— M)
1
3

C1(y) = Dl1eai exp (My) + Caivg €Xp (— Mit)] (2.17

1

3
Dy (y) = D[ exp (My) + Caiss €XP (— Ay)]
1

By inserting (2.17) in (2.13) one finds

Cag = Ggqs C3q = Doty

ag = —hg (A? + my?) sin & cos a my [A? (L — cos®a) — m,*L]~® (.218)
y _ MLOp—m®) AEU—D) f md L sinta)

4 L — cos? o) — my2L

my% cos o hq (

The solution can then be written in the form
3

Ay () = my™ D [eih; exp (hiy) — Crushi exp (— Aiy)]
1

3

By (y) = Dilciexp (My) -+ ciss exp (— Mip)] (2.19)
1
3
C1(y) = D) [ei:0xp (hily) — Cius; €XP (— M)l
1
Dy (y) = D\ le;biexp (My) — cuiaby exp (— Ag)]
1

The integration constants c¢; can be found from the boundary conditions (2.14),

6 3
2 =0, m Z (ki — cisgh;) = — sina
1 1

3
(6t — Cir3@,) = — cOS 00 (2.20)
1
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3 a3
2 le;exp (M) 4 ez exp (— )1 =0, 2 [eh; exp (M) — cissh, exp (— M) =0
1 1

3

Dileia, exp (A) — cisga;€xp (— M)l = 0

1
The solution of the system (2.20) for c; is given by

3
A, = my™? Z?»Gq, B1—2an Z“q LY DI‘ZbG (2.21)

Fg = by sh(hey) —{-bzch(qu)—}—bash[)\, (y—1)]+b40h{7\4 =1, Gy=h'PF,
byt = 2A T (M5 sina — Mg cos o)

by = 2A; 7 (a, sin o — hgmy~Lcos a) Mg (2.22)
bt = 20,1 (MIP sine — Mgf,”3 oS o)
bt = 20,7 [(AMEY — a M) sin o — A MEY — a M) cosa]

where (there is no summation over q) A4 is the determmant of the system (2.20), M%?nﬂ are the minors of
the determinant Ay, the superscripts showing the deleted columns and the subscripts the deleted rows.

If the systems (2.8) and (2.9) and the boundary conditions (2.10) and (2.11) are compared it can be seen
that the solution of the boundary-value problem (2.9) and (2.11) can be obtained from the solution of the prob-
lem (2.8) and (2.10) simply by replacing in the latter my, A g, tano,X, z by my, p q cot o, Z, X, respectively;
in another notation by adding an extra prime,

v, = Cy (y) cos myz, vy = B, (y) sin myz, v, = A, (y) cos myz,
P" = Dy(y) sin myz (2.23)

The functions Ay (), By(¥), Ca(y), Dy (y) are found from (2.21), namely,

3 3 3 3
Ay =my1 ZI weGy's By= qu,’ Cy= Z%Gq” D, = 2 b/'Gy
1 1 1 1 2.24)

Fo' = bg" sh (ey) + b,* ¢h (ne¥) + bg* sh [ug (y — 1)] + b ch [pe (y — 1)1, G’ = ug™pFy
Similarly as in [3] the formation of rigid zones in sections on the perturbed plane is possible for some

ratio of the parameters which characterize the flow of a viscoplastic medium, It can be assumed that rigid
regions arise at the vertices of the sections of the lower surface (y=—98;, —6,,, c08 myX=cosmyz=—1).

By formulating the condition (1.1) for these points with an accuracy up to the small quantities of the
first order a critical relation is obtained between the parameters v,, h, k, n, o, my-y, 0y, 0y,

1 — 1[4y, (0)sin o + Cyy (0) cos al 8,, — [C,,y (0) sin o + Ay (0) cos al 8, = 0 {(2.25)

If the surface perturbation for the same flows exceeds the critical one, §; +8,= 6y, +6,,, then rigid
zones are formed in the sections, but if 6; + 0, < 6, +0;4, norigid zones are found in the conduit.

For a=mn/2 (n=1, 2, ...) the obtained solution does not satisfy all the conditions of the problem, since
the characteristic equation (2.15) possesses multiple or complex roots, and the solution can be much sim-
plified.

Lengthwise Perturbations.

y=2>8 cosmz, 6, =0, cosa =1

In this case only the velocity v, does not vanish,
The zeroth approximation is

v =y (2.26)

For the first approximation vz' only one equation remains of the gystem (2.8):
(A + @) vy ax + v, 4y = 0 (2.27)

From (2.10) the boundary conditions are found for (2.27) which are of the form

v, (z,1) =0, v’ (2, 0) = — cos myx (2.28)
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The velocity function is sought in the form

v, = Cy(y) cos myz (2.29)
By inserting (2.29) into (2.27) and (2.28) we arrive at the equation
P —mh(1+a)C =0 (2.30)
with the boundary conditions
G1)=0, ¢ (0)=—1 (2.31)

Solving (2.30) and (2.31) and using (2.26) one obtains

v,/= y -+ 8; [sh (A)1-3sh [A (y — 1)} cos myz -+ o (8,2), (2.32)
A=m (1 + a®

The criterion for the formation of stagnant zones at the vertices of the sections (y= —6y,, CO8 MyX =
—1) is obtained from the condition (1.1) as '

8 > 814, Oy = [th (A)]/ A (2.33)
Transverse Perturbations.

y=10,c08myz, 8, =0, cosa =1
In this case v¢x=0, (vg, vy) #0.
The zeroth approximation is

2,0 = 0, 2,00 = y

2.34)
From (2.9) one obtains for the first approximation the system
2(1 + @) vy, uy + Uy, 22+ V2, e+ Py = 0
2(1 4 0Y v, o+ Vewy + g0+ Plo=0, vy y+ i, =0 (2.35)
The boundary conditions obtained from (1.11) are
v =v9"=0fory=1, v,/ =0, v,,) = —cos myz for y =0 (2.36)
The solution is sought in the form
_P” = D, (y) sin myz, 9" = B, (y)sin myz, v,/ = A, (y) cos myz (2.37)

If 2.37) is inserted into (2.35) and (2.36), then after some transformation, the problem (2.35) and (2.36)
is reduced to the following system:

Ay = my pBy, [(1 + 247 p* — mp?] B, + pD, = 0 (2.38)
[my,?p® — (1 + 2a®)pl B, - D, = 0
A1) = By (1) = B, (0) = 0, 4, (0) = —1 (2.39)

The solution of (2.38) and (2.39) is given by

2 2 2
Ag = mz—IZMqu', Bg = ZFQI, D2 = qu’qu
i 1 i
Fy' = bV sh (ngy) + be* sh [pg(y — 1)] + b,* ch [y (y— 1)]
G = pg pFy, by = pg lugme™® — (1 + 20%)]
B = my%y, by, = 1 4 24% - 2a (1 + a2 (2.40)
where by represent the expressions
b = — 2A;TMI?, b = 20T, b = 20,y M
(there is no summation over q)

1 1 1 1
251 2 — M — W2 -
Az = M, M, M M, , M 1= exp (p"l.)

WMy weMy, —p Mt — paMyt
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where M%g: 2 denote the minors of the determinant A,.

In this case the speed is
| V] =y~ 8,4, (y) cos msz + 0 (3,7) (2.14)

The criterion for the formation of stagnant zones at the points of the surface (y=—4,,, cos myz=—1)
is as follows:

2
80> 00 Boy =[S0 (007 chitg — b,¥sh pq)]}—l (2.42)
1
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